Math 2110Q
Multivariable Calculus
Instructor: Stephen Zito
E-mail: stephen.zito@uconn.edu
Personal Website: https://www.stephen-zito.math.uconn.edu/
Office Hours: Tu,W,Th 9:00 - 10:00 or by appointment.

Text: Multivariable Calculus, 8th ed., by James Stewart (no need to purchase).

Course Description:
- The course will be delivered online and asynchronous. I will post videos every Tuesday, Wednesday, and Thursday morning by 9:00 A.M.
- Videos will be created via HuskyCT’s Blackboard Collaborate tool.
- One-on-one and office hours will also be via BC (Blackboard Collaborate).

Homework:
- Homework will be posted every Tuesday, Wednesday, and Thursday.
- These will NOT be collected.
- I highly recommend giving the problems a shot. Math is a skill and you only get better at a skill by practicing.
- We will use Paul’s Online Notes.

Quizzes:
- There will be two quizzes every Tuesday, Wednesday, Thursday.
- I will post the quizzes on HuskyCT at 9:00 AM.
- Each quiz is worth 5 points.
- They will be due by 11:59 PM the same day.
- The first day of class, the day of the midterm, and the day of the final will not have quizzes.
- Quizzes are always on the previous day’s material.

Exams
- The midterm exam will be 6/14/23
- The final exam will be 6/29/23.
- You must work ALONE on exams.

Make-Up Policy:
- There are NO make-ups on quizzes. Let me repeat that “NO make-ups.”
- I will drop five quizzes at the end of the term.
- If you fail to submit the midterm, then the percentage weight carries over to the final exam.

Submission of Assignments
- Any format is acceptable as long as I can open it, see it, and read it. I prefer pdfs.
- Every assignment is due by 11:59 PM. A submission of 11:59:01 or later is past due.
- Technical issues are your responsibility.
- Time zone differences are your responsibility.
- Don’t wait till the last minute or you risk not submitting on time.
- You get ONE submission.
- Submissions must be via HuskyCT.
- You should receive a confirmation email upon a successful submission.
Grades:

<table>
<thead>
<tr>
<th>Quizzes</th>
<th>every week</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>6/14</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>6/29</td>
<td>25%</td>
</tr>
</tbody>
</table>

- Any discussion of grades must be within one week.

Disabilities

- If you anticipate or experience physical or academic barriers based on disability or pregnancy, or require accommodations, please contact Rachel Julian, Waterbury’s CSD Regional Campus Coordinator, to discuss options.
- Her email is Rachel.julian@uconn.edu and she can also be reached through the Center for Students with Disabilities (860) 486-6899, or http://csd.uconn.edu/.
- https://csd.uconn.edu/documentation-guidelines/
- https://csd.uconn.edu/regional-campus-students/

Mental Health

If you are experiencing undue personal or academic stress at any time during the semester or need to talk with someone about a personal problem or situation, I encourage you to seek support as soon as possible. I am available to talk with you about stresses related to your work in my class. Additionally, I can assist you in reaching out to any one of a wide range of campus resources, including:

- Mental Health Resource Center 203-236-9817 or Claudia.Pina@uconn.edu
 https://waterbury.uconn.edu/student-life/student-resources/mental-health/
- Student Services and Academic Advising https://waterbury.uconn.edu/student-life/student-resources/student-affairs/
- Center for Students with Disabilities https://csd.uconn.edu/

General Thoughts

- Communication is KEY. Please, don’t be afraid to contact me if you have questions, concerns, or comments.
- Seriously, contact me and we can go over any problem or topic you want.
- In a F2F class, I allow open notes for all quizzes and tests. The same will apply for this course.
- Please, try not to google every single question. If you’re stuck, contact me and we can talk it through.
- In a typical semester, the most difficult aspect of Calculus 3 is the amount of material. For a summer session of Calculus 3, the difficulty is compounded by the fast pace.
- If you find yourself falling behind, contact me! Stop by office hours and we can review and discuss.
- Check HuskyCT announcements EVERY DAY.
<table>
<thead>
<tr>
<th>Day</th>
<th>Section</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.1, 12.2</td>
<td>Three-Dimensional Coordinate System, Vectors</td>
</tr>
<tr>
<td></td>
<td>12.3</td>
<td>Dot Product</td>
</tr>
<tr>
<td>2</td>
<td>12.4, 12.5</td>
<td>Cross Product, Lines and Planes</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>Cylinders and Quadric Surfaces</td>
</tr>
<tr>
<td>3</td>
<td>14.1, 14.3</td>
<td>Functions of Several Variables, Partial Derivatives</td>
</tr>
<tr>
<td></td>
<td>14.4</td>
<td>Tangent Planes and Linear Approximation</td>
</tr>
<tr>
<td>4</td>
<td>14.5, 14.6</td>
<td>Chain Rule</td>
</tr>
<tr>
<td></td>
<td>14.6</td>
<td>Directional Derivatives</td>
</tr>
<tr>
<td>5</td>
<td>14.7</td>
<td>Maximum and Minimum Values</td>
</tr>
<tr>
<td></td>
<td>14.8</td>
<td>Lagrange Multipliers</td>
</tr>
<tr>
<td>6</td>
<td>15.1</td>
<td>Double Integrals over Rectangles</td>
</tr>
<tr>
<td></td>
<td>15.2</td>
<td>Double Integrals over General Regions</td>
</tr>
<tr>
<td>7</td>
<td>15.3</td>
<td>Double Integrals in Polar Coordinates</td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>Triple Integrals in Cartesian Coordinates</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Midterm Exam</td>
</tr>
<tr>
<td>9</td>
<td>15.7</td>
<td>Triple Integrals in Cylindrical Coordinates</td>
</tr>
<tr>
<td></td>
<td>15.8</td>
<td>Triple Integrals in Spherical Coordinates</td>
</tr>
<tr>
<td>10</td>
<td>13.1, 13.2</td>
<td>Vector Functions, Calculus of Vector Functions</td>
</tr>
<tr>
<td></td>
<td>13.3</td>
<td>Arc Length and Curvature</td>
</tr>
<tr>
<td>11</td>
<td>16.1</td>
<td>Vector Fields</td>
</tr>
<tr>
<td></td>
<td>16.2</td>
<td>Line Integrals</td>
</tr>
<tr>
<td>12</td>
<td>16.3</td>
<td>The Fundamental Theorem of Line Integrals</td>
</tr>
<tr>
<td></td>
<td>16.4</td>
<td>Green's Theorem</td>
</tr>
<tr>
<td>13</td>
<td>16.5</td>
<td>Curl and Divergence</td>
</tr>
<tr>
<td></td>
<td>16.6</td>
<td>Parametric Surfaces and Their Areas</td>
</tr>
<tr>
<td>14</td>
<td>16.7</td>
<td>Surface Integrals</td>
</tr>
<tr>
<td></td>
<td>16.8</td>
<td>Stokes' Theorem</td>
</tr>
<tr>
<td>15</td>
<td>16.9</td>
<td>Divergence Theorem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Exam</td>
</tr>
</tbody>
</table>